Calculators are not allowed Answer the following questions.

- 1. Let $y = 5x^2 3$ and Δx be an increment of x.
 - (a) Find general formulas for Δy and dy. (3 points)
 - (b) If x changes from 3 to 3.1, then find dy (3 points)
- 2. (a) Find an equation of the normal line to the graph of the following equation

$$x\sin y + xy + y - \pi = 0.$$

at the point whose x - coordinate is 0. (5 points)

(b) Find the extrema of

$$f(x) = 2\sin x - x \quad \text{on } [0, \pi]$$

 $(\sqrt{3} \simeq 1.73 \text{ and } \pi \simeq 3.141)$ (5 points)

- 3. (a) A point P moves on the circle $x^2 + (y-2)^2 = 5$, in such a way that its y coordinate increases at a rate of 4 units per second. How fast is its x coordinate changing when x = 1? (5 points)
 - (b) State Rolle's theorem. Does this theorem apply to $f(x) = \sqrt{9-x^2}$ on [-3,3]?

 If yes, find c which satisfies the conclusion of the theorem and if not explain why not. (24-3 points)
- 4 Let

$$f(x) = \frac{x}{\sqrt[3]{x^2 - 1}}$$

- (a) Show that $f'(x) = \frac{x^2 3}{3\sqrt[3]{(x^2 1)^4}}$ (3 points)
- (b) Find the vertical and horizontal asymptotes for the graph of f (if any). (3 points)
- (c) Find the intervals on which f is increasing or decreasing, and find the local extrema of f (if any). (3 points)
- (d) Given that $f''(x) = \frac{2x(9-x^2)}{9\sqrt[3]{(x^2-1)^7}}$, find the intervals on which the graph of f is concave upward or concave downward, and find the points of inflection (if any) (3 points)
- (e) Sketch the graph of f. (3 points)